(Sponsored Content)

Siemens Energy North America President Rich Voorberg was optimistic and upbeat as he sat down to speak with us at POWERGEN International back in January.

Voorberg has attended POWERGEN for nearly 30 years but still buzzes about walking the show floor or learning the latest technologies.

“It’s about working together,” said Voorberg, “and it’s about learning from each other.”

This kind of collaboration is crucial as the power sector faces the pressures of net-zero carbon goals and unprecedented load growth.

Big changes are happening already. A growing number of utilities and power generation owners have committed to cut carbon emissions 80% by 2030.

The U.S. bulk power system is becoming more renewables-heavy, thanks largely to coal-fired plant retirements and huge growth from utility-scale solar. The U.S. Energy Information Administration (EIA) is projecting that renewables’ share of electricity will increase three percent in just one year, from 22% in 2023 to nearly 25% in 2024.

Demand for power is also exploding. Many utilities are increasing their load forecasts, in no small part from new manufacturing and the rise of energy-intensive data centers using AI. Duke Energy Carolinas, for example, recently told regulators its current projected peak demand growth by 2030 is approximately eight times what it projected in the company’s 2022 Carbon Plan.

Voorberg said an all of the above approach is needed in the face of these challenges. This includes more solar, wind and battery installations, but also advancements in clean firm power technologies like hydrogen and small modular reactors, he said.

Conventional power sources will still be needed “for the foreseeable future,” Voorberg said.

The gas turbine remains the workhorse of power generation, and previous efforts have been aimed at extending time between outages and the life of equipment. Now, the focus turns to burning cleaner fuels like hydrogen, which is no longer simply a hypothetical situation.

Voorberg pointed to a hydrogen-blending test at Constellation’ Hillabee Generating Station, a 753 MW natural gas combined-cycle (NGCC) in central Alabama. Constellation blended 38 percent hydrogen by volume, with the demonstration occurring on a Siemens Energy SGT6-6000G gas turbine.

Researchers said only “minor modifications” were required for the blending test. Constellation said it added an inlet for the hydrogen to be blended, a control valve and calibrated instrument to measure fuel flow.

But Voorberg acknowledged that long-term trial runs are needed to see how parts on the backend are truly affected.

“We’ve theoretically got it,” he said. “But we’ve got to get these machines running and prove it out to ourselves over a longer and longer period of time.”

But at the end of the day, it’s about the business case.

Tax credits and other incentives have been established to support scaling up the production, transportation, storage and end-use of clean hydrogen. Siemens Energy itself opened a gigawatt-scale electrolyzer production facility in Berlin last year.

Establishing a functioning hydrogen economy in the U.S. is not without its headwinds. It’s a microcosm of the greater challenge of getting to net-zero by 2050 and the reality that we might not yet have all the tools commercially available to get there.

That’s why Siemens Energy spends more than $1 billion annually in R&D, aimed at bringing newer, cleaner innovations to market.

“It’s going to be difficult, and it’s going to really push out our engineers,” said Voorberg. “We believe only half of the technology exists today in a commercial mandate to get to 2050.”

All the more reason it takes a village to reach net-zero.

This post appeared first on Power Engineering.